中教数据库 > 佛山科学技术学院学报(自然科学版) > 文章详情

基于双支持向量机的大样本分类算法 胡小生

更新时间:2015-10-15

【摘要】针对支持向量机( Support Vector Mac,hine.SVM)处理大规模样本分类的学习效率降低问题,提出两阶段学习的支持向量机算法。该方法首先在正负类分别进行无监督聚类,提取各个聚类质心组成约简训练集,进行初次SVM训练;然后,根据初次训练结果选取边界样本集,参与第二次SVM训练。在UCI数据集上的实验结果表明,所提方法在保持分类泛化性能的同时,提高了模型的训练速度。

【关键词】

1160 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号